
LOFAR2.0 Station Control

Stichting ASTRON

Jan 26, 2024

CONTENTS:

1 Installation 3
1.1 Post-boot Initialisation . 4
1.2 Configuration . 4

2 Interfaces 5
2.1 Monitoring & Control . 5
2.2 Monitoring GUIs . 12
2.3 Logs . 13

3 Devices 15

4 Using Devices 17
4.1 States . 17
4.2 FAULT . 18
4.3 Initialise hardware . 18
4.4 Attributes . 19
4.5 Attribute masks . 19

5 AntennaField-HB (AFH), AntennaField-LB (AFL) 21
5.1 Observation setup . 21
5.2 Positions . 22
5.3 Configuration . 22
5.4 HBAT element positions . 23

6 TileBeam, DigitalBeam 25
6.1 Common functionality . 26
6.2 DigitalBeam . 28

7 Beamlet 29

8 RECVH, RECVL 31
8.1 Error information . 31

9 SDP Firmware 33
9.1 Basic configuration . 33
9.2 Error information . 33

10 SDP 35
10.1 Basic configuration . 35
10.2 Frequency management . 35
10.3 Data-quality information . 36

i

10.4 Error information . 36
10.5 Version Information . 37
10.6 Waveform Generator . 37

11 BST, SST, and XST 39
11.1 BST Statistics attributes . 39
11.2 SST Statistics attributes . 39
11.3 XST Statistics attributes . 40
11.4 Subscribe to statistics streams . 41

12 StationManager 43

13 Docker 45

14 PSOC 47

15 CCD 49

16 EC 51

17 Configuration 53

18 TemperatureManager 55

19 Device Configuration 57
19.1 TangoDB . 57
19.2 Device interaction . 57
19.3 Command-line interaction . 58

20 Enter your LOFAR2.0 Hardware Configuration 59
20.1 Mandatory settings . 59
20.2 Optional settings . 60

21 Observing 63
21.1 Starting an observation . 63
21.2 Managing observation(s) . 65

22 Signal Chain 67
22.1 RECV: Data reception . 67
22.2 SDP: Digital signal processing . 68

23 Instrument Calibration 71
23.1 Mathematical Background . 72
23.2 Configuration . 72
23.3 Coarse Corrections . 73
23.4 Fine Corrections . 73
23.5 Managing Calibration Tables . 74
23.6 Applying Calibration Values . 75

24 Celestial & Geodetic Calibration 77

25 Broken Hardware 79
25.1 Disabling antennas . 79

26 Power distribution 81

ii

27 Developer information 83
27.1 Environment variables . 83
27.2 Docker . 83
27.3 Logging . 84
27.4 Services . 86

28 FAQ 87
28.1 Connecting to devices . 87
28.2 Docker . 87
28.3 Windows . 88
28.4 SSTs/XSTs . 88
28.5 Other containers . 91

29 Indices and tables 93

iii

iv

LOFAR2.0 Station Control

LOFAR2.0 Station Control is a software stack aimed to monitor, control, and manage a LOFAR2.0 station. In order
to do so, it whips up a series of Docker containers, and combines the power of Tango Controls, PyTango, Docker,
Grafana, Jupyter Notebook, and many others to provide a rich and powerful experience in using the station.

Full monitoring and control access to the LOFAR2.0 station hardware is provided, by marshalling their rich OPC-
UA interfaces. Higher-level logic makes it possible to easily configure and obtain the LOFAR station data products
(beamlets, XSTs, SSTs, BSTs) from your local machine using Python, or through one of our provided web interfaces.

Even without having access to any LOFAR2.0 hardware, you can install the full stack on your laptop, and experiment
with the software interfaces.

CONTENTS: 1

https://www.tango-controls.org/
https://pytango.readthedocs.io/en/stable/
https://www.docker.com/
https://grafana.com/
https://jupyter.org/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/

LOFAR2.0 Station Control

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

You will need the following dependencies installed:

• docker

• docker-compose

• git

• make

You start with checking out the source code, f.e. the master branch, as well as the git submodules we use:

git clone https://git.astron.nl/lofar2.0/tango.git
cd tango
git submodule init
git submodule update

Next, we bootstrap the system. This will build our docker images, start key ones, and load the base configuration. This
may take a while:

cd docker-compose
make bootstrap

If you do have access to LOFAR station hardware, you must upload its configuration to the configuration database. See
Enter your LOFAR2.0 Hardware Configuration.

Now we are ready to start the other containers:

make start

and make sure they are all up and running:

make status

You should see all containers either in the Up state or in Exit 0. If not, you can inspect why with docker logs
<container>. Note that the containers will automatically be restarted on failure, and also if you reboot. Stop them
explicitly to bring them down (make stop <container>).

3

LOFAR2.0 Station Control

1.1 Post-boot Initialisation

After bootstrapping, and after a reboot, the software and hardware of the station needs to be explicitly initialised. Note
that the docker containers do restart automatically at system boot.

The following commands start all the software devices to control the station hardware, and initialise the hardware
with the configured default settings. Go to http://localhost:8888, start a new Station Control notebook, and initiate the
software boot sequence:

start and initialise the other devices
go through the full startup sequence
OFF -> HIBERNATE -> STANDBY -> ON
stationmanager.station_hibernate()
stationmanager.station_standby()
stationmanager.station_on()

1.2 Configuration

These sections are optional, to configure specific functionality you may or may not want to use.

4 Chapter 1. Installation

http://localhost:8888

CHAPTER

TWO

INTERFACES

The station provides the following interfaces accessible through your browser (assuming you run on localhost):

Interface Subsystem URL Default credentials
Jupyter Lab Jupyter http://localhost:8888
Monitoring GUIs Grafana http://localhost:3000 admin/admin
Alerting Alerta http://localhost:8081 admin/alerta
Logs Kibana http://localhost:5601

Futhermore, there are some low-level interfaces:

Interface Subsystem URL Default credentials
PyTango Tango tango://localhost:10000
Prometheus Prometheus http://localhost:9090
TANGO-Grafana Exporter Python HTTPServer http://localhost:8000
ReST API tango-rest http://localhost:8080 tango-cs/tango
TangoDB MariaDB http://localhost:3306 tango/tango
Archive Database MariaDB http://localhost:3307 tango/tango
Log Database ElasticSearch http://localhost:9200

2.1 Monitoring & Control

The main API to control the station is through the Tango Controls API we expose on port 10000, which is most easily
accessed using a PyTango client. The Jupyter Lab installation we provide is such a client.

2.1.1 Jupyter Lab

The station offers Jupyter Lab On http://localhost:8888, which allow one to interact with the station, for example to set
control points, access monitoring points, or to graph their values.

The notebooks provide some predefined variables, so you don’t have to look them up:

Create shortcuts for our devices, if they exist

def OptionalDeviceProxy(device_name: str):
"""Return a DeviceProxy for the given device, or None."""

(continues on next page)

5

http://localhost:8888
http://localhost:3000
http://localhost:8081
http://localhost:5601
http://localhost:9090
http://localhost:8000
http://localhost:8080
http://localhost:3306
http://localhost:3307
http://localhost:9200
https://tango-controls.readthedocs.io/en/latest/
https://pytango.readthedocs.io/en/stable/client_api/index.html
http://localhost:8888

LOFAR2.0 Station Control

(continued from previous page)

try:
return DeviceProxy(device_name)

except DevFailed:
device is not in database, or otherwise not reachable
return None

apsct_l0 = OptionalDeviceProxy("STAT/APSCT/L0")
apsct_l1 = OptionalDeviceProxy("STAT/APSCT/L1")
apsct_h0 = OptionalDeviceProxy("STAT/APSCT/H0")
apscts = [apsct_l0, apsct_l1, apsct_h0]

apspu_l0 = OptionalDeviceProxy("STAT/APSPU/L0")
apspu_l1 = OptionalDeviceProxy("STAT/APSPU/L1")
apspu_h0 = OptionalDeviceProxy("STAT/APSPU/H0")
apspus = [apspu_l0, apspu_l1, apspu_h0]

recvl_l0 = OptionalDeviceProxy("STAT/RECVL/L0")
recvl_l1 = OptionalDeviceProxy("STAT/RECVL/L1")
recvh_h0 = OptionalDeviceProxy("STAT/RECVH/H0")
recvs = [recvl_l0, recvl_l1, recvh_h0]

unb2_l0 = OptionalDeviceProxy("STAT/UNB2/L0")
unb2_l1 = OptionalDeviceProxy("STAT/UNB2/L1")
unb2_h0 = OptionalDeviceProxy("STAT/UNB2/H0")
unb2s = [unb2_l0, unb2_l1, unb2_h0]

sdpfirmware_l = OptionalDeviceProxy("STAT/SDPFirmware/LBA")
sdp_l = OptionalDeviceProxy("STAT/SDP/LBA")
bst_l = OptionalDeviceProxy("STAT/BST/LBA")
sst_l = OptionalDeviceProxy("STAT/SST/LBA")
xst_l = OptionalDeviceProxy("STAT/XST/LBA")
beamlet_l = OptionalDeviceProxy("STAT/Beamlet/LBA")
digitalbeam_l = OptionalDeviceProxy("STAT/DigitalBeam/LBA")
antennafield_l = af_l = OptionalDeviceProxy("STAT/AFL/LBA")

sdpfirmware_h = OptionalDeviceProxy("STAT/SDPFirmware/HBA")
sdp_h = OptionalDeviceProxy("STAT/SDP/HBA")
bst_h = OptionalDeviceProxy("STAT/BST/HBA")
sst_h = OptionalDeviceProxy("STAT/SST/HBA")
xst_h = OptionalDeviceProxy("STAT/XST/HBA")
beamlet_h = OptionalDeviceProxy("STAT/Beamlet/HBA")
digitalbeam_h = OptionalDeviceProxy("STAT/DigitalBeam/HBA")
tilebeam_h = OptionalDeviceProxy("STAT/TileBeam/HBA")
antennafield_h = af_h = OptionalDeviceProxy("STAT/AFH/HBA")

sdpfirmware_h0 = OptionalDeviceProxy("STAT/SDPFirmware/HBA0")
sdp_h0 = OptionalDeviceProxy("STAT/SDP/HBA0")
bst_h0 = OptionalDeviceProxy("STAT/BST/HBA0")
sst_h0 = OptionalDeviceProxy("STAT/SST/HBA0")
xst_h0 = OptionalDeviceProxy("STAT/XST/HBA0")
beamlet_h0 = OptionalDeviceProxy("STAT/Beamlet/HBA0")

(continues on next page)

6 Chapter 2. Interfaces

LOFAR2.0 Station Control

(continued from previous page)

digitalbeam_h0 = OptionalDeviceProxy("STAT/DigitalBeam/HBA0")
tilebeam_h0 = OptionalDeviceProxy("STAT/TileBeam/HBA0")
antennafield_h0 = af_h0 = OptionalDeviceProxy("STAT/AFH/HBA0")

sdpfirmware_h1 = OptionalDeviceProxy("STAT/SDPFirmware/HBA1")
sdp_h1 = OptionalDeviceProxy("STAT/SDP/HBA1")
bst_h1 = OptionalDeviceProxy("STAT/BST/HBA1")
sst_h1 = OptionalDeviceProxy("STAT/SST/HBA1")
xst_h1 = OptionalDeviceProxy("STAT/XST/HBA1")
beamlet_h1 = OptionalDeviceProxy("STAT/Beamlet/HBA1")
digitalbeam_h1 = OptionalDeviceProxy("STAT/DigitalBeam/HBA1")
tilebeam_h1 = OptionalDeviceProxy("STAT/TileBeam/HBA1")
antennafield_h1 = af_h1 = OptionalDeviceProxy("STAT/AFH/HBA1")

stationmanager = OptionalDeviceProxy("STAT/StationManager/1")
ccd = OptionalDeviceProxy("STAT/CCD/1")
ec = OptionalDeviceProxy("STAT/EC/1")
pcon = OptionalDeviceProxy("STAT/PCON/1")
psoc = OptionalDeviceProxy("STAT/PSOC/1")
docker = OptionalDeviceProxy("STAT/Docker/1")
temperaturemanager = OptionalDeviceProxy("STAT/TemperatureManager/1")
configuration = OptionalDeviceProxy("STAT/Configuration/1")

Put them in a list in case one wants to iterate
devices = (

[
stationmanager,
ccd,
ec,
pcon,
psoc,
docker,
temperaturemanager,
configuration,
sdpfirmware_l,
sdp_l,
bst_l,
sst_l,
xst_l,
beamlet_l,
digitalbeam_l,
af_l,
sdpfirmware_h,
sdp_h,
bst_h,
sst_h,
xst_h,
beamlet_h,
digitalbeam_h,
tilebeam_h,
af_h,
sdpfirmware_h0,

(continues on next page)

2.1. Monitoring & Control 7

LOFAR2.0 Station Control

(continued from previous page)

sdp_h0,
bst_h0,
sst_h0,
xst_h0,
beamlet_h0,
digitalbeam_h0,
tilebeam_h0,
af_h0,
sdpfirmware_h1,
sdp_h1,
bst_h1,
sst_h1,
xst_h1,
beamlet_h1,
digitalbeam_h1,
tilebeam_h1,
af_h1,

]
+ apscts
+ apspus
+ recvs
+ unb2s

)

Note: the Jupyter notebooks use enhancements from the itango suite, which provide tab completions, but also the
Device alias for DeviceProxy as was used in the Python examples in the next section.

For example, you can start a new Station Control notebook (File->New->Notebook->StationControl), and access these
devices:

8 Chapter 2. Interfaces

LOFAR2.0 Station Control

You can also use Jupyter Labs integrated console to run your commands (File->New->Console->StationControl) and
exploit the itango suite enhancements:

2.1. Monitoring & Control 9

LOFAR2.0 Station Control

2.1.2 Jupyter Lab and Git

We provide the ability to interact with git repositories by including the jupyter-git plugin. See their webpage for how
to use this plugin.

In our installation, all git commits will be made as a fictive JupyterLab on $HOSTNAME user. This is because Jupyter-
Lab does not know who the user is, and it’s preferred to explicitly state at least where the commit comes from, rather
than under the name of the last person who told git who they are.

Any problems encountered in git that cannot be solved through the plugin, can be solved by spawning a Terminal and
using the git command-line interface.

2.1.3 PyTango

To access a station from scratch using Python, we need to install some dependencies:

pip3 install tango

Then, if we know what devices are available on the station, we can access them directly:

import tango
import os

Tango needs to know where our Tango API is running.
os.environ["TANGO_HOST"] = "localhost:10000"

(continues on next page)

10 Chapter 2. Interfaces

https://github.com/jupyterlab/jupyterlab-git

LOFAR2.0 Station Control

(continued from previous page)

Construct a remote reference to a specific device.
One can also use "tango://localhost:10000/STAT/Boot/1" if TANGO_HOST is not set
boot_device = tango.DeviceProxy("STAT/Boot/1")

Print the device's state.
print(boot_device.state())

To obtain a list of all devices, we need to access the database:

import tango

Tango needs to know where our Tango API is running.
import os
os.environ["TANGO_HOST"] = "localhost:10000"

Connect to the database.
db = tango.Database()

Retrieve the available devices, excluding any Tango-internal ones.
This returns for example: ['STAT/Boot/1', 'STAT/Docker/1', ...]
devices = list(db.get_device_exported("STAT/*"))

Connect to any of them.
any_device = tango.DeviceProxy(devices[0])

Print the device's state.
print(any_device.state())

2.1.4 ReST API

We also provide a ReST API to allow the station to be controlled without needing to use the Tango API. The root
access point is http://localhost:8080/tango/rest/v10/hosts/databaseds;port=10000/ (credentials: tango-cs/tango). This
API allows for:

• getting and setting attribute values,

• calling commands,

• retrieving the device state,

• and more.

For example, retrieving http://localhost:8080/tango/rest/v10/hosts/databaseds;port=10000/devices/STAT/SDP/1/state
returns the following JSON document:

{"state":"ON","status":"The device is in ON state."}

For a full description of this API, see https://tango-rest-api.readthedocs.io/en/latest/.

2.1. Monitoring & Control 11

http://localhost:8080/tango/rest/v10/hosts/databaseds;port=10000/
http://localhost:8080/tango/rest/v10/hosts/databaseds;port=10000/devices/STAT/SDP/1/state
https://tango-rest-api.readthedocs.io/en/latest/

LOFAR2.0 Station Control

2.2 Monitoring GUIs

Each device exposes a list of monitoring points as attributes with the _R prefix. These can be accessed interactively
from a controle console (such as Jupyter), but that will not scale.

2.2.1 Grafana

We offer Grafana dashboards on http://localhost:3000 that provide a quick overview of the station’s status, including
temperatures and settings. Several dashboards are included. An example:

NOTE: These dashboards are highly subject to change. The above examples provide an impression of a possible
overview of the station state.

12 Chapter 2. Interfaces

https://grafana.com/
http://localhost:3000

LOFAR2.0 Station Control

You are encouraged to inspect each panel (graph) to see the underlying database query and settings. Use the small
arrow in the panel’s title to get a drop-down menu of options, and select inspect. See the Grafana documentation for
further information.

The Grafana dashboards are configured with the following data sources:

• Prometheus, the time-series database that caches the latest values of all monitoring points (see next section),

• TangoDB, providing access to device properties (fixed settings),

• Loki, the log output of the devices.

2.2.2 Prometheus

Prometheus is a low-level monitoring system that allows us to periodically retrieve the values of all the attributes of all
our devices, and cache them to be used in Grafana:

• Every several seconds, Prometheus scrapes our TANGO-Grafana Exporter (our fork of https://gitlab.com/
ska-telescope/TANGO-grafana.git), collecting all values of all the device attributes (except the large ones, for
performance reasons).

• Prometheus can be queried directly on http://localhost:9090,

• The TANGO-Grafana Exporter can be queried directly on http://localhost:8000,

• The query language is PromQL, which is also used in Grafana to query Prometheus,

Prometheus stores attributes in the following format:

device_attribute{device="stat/recvh/1",
dim_x="32", dim_y="0",
instance="tango-prometheus-exporter:8000",
job="tango",
label="RCU_temperature_R",
name="RCU_temperature_R",
type="float",
x="00", y="0"}

The above describes a single data point and its labels. The primary identifying labels are device and name. Each point
furthermore has a value (integer) and a timestamp. The following transformations take place:

• For 1D and 2D attributes, each array element is its own monitoring point, with x and y labels describing the
indices. The labels dim_x and dim_y describe the array dimensionality,

• Attributes with string values get a str_value label describing their value.

2.3 Logs

The devices, and the docker containers in general, produce logging output. The easiest way to access the logs of a
specific container is to ask docker directly. For example, to access and follow the most recent logs of the device-sdp
container, execute on the host:

docker logs -n 100 -f device-sdp

This is mostly useful for interactive use.

2.3. Logs 13

https://prometheus.io/docs/introduction/overview/
https://git.astron.nl/lofar2.0/ska-tango-grafana-exporter
https://gitlab.com/ska-telescope/TANGO-grafana.git
https://gitlab.com/ska-telescope/TANGO-grafana.git
http://localhost:9090
http://localhost:8000
https://prometheus.io/docs/prometheus/latest/querying/basics/

LOFAR2.0 Station Control

2.3.1 Loki

To monitor the logs remotely, or to browse older logs, use the Logs Dashboard that is included among the Grafana
dashboards, and served on http://localhost:3000/d/Hqo-qIO4z/logs?orgId=1. Loki is a log aggregation system fully
integrated in Grafana and inspired by Prometheus. Currently, the following logs are collected in our Grafana Loki
implementation:

• Logs of all devices,

• Logs of the Docker containers.

Once reached the Grafana Logs Dashboard, it is possible to select several parameters such as station name, device name
and interval to perform the log research. Logs will be marked with different colors, following their level (e.g. INFO,
WARNING, ERROR, etc.).

You should see something like:

14 Chapter 2. Interfaces

http://localhost:3000/d/Hqo-qIO4z/logs?orgId=1

CHAPTER

THREE

DEVICES

This package implements the Station Control (SC) part of a LOFAR2.0 station, the core of which implements several
Tango devices that connect to the station’s hardware as well as to each other. In the following graph, green components
are implemented in this package, the gray components are external:

A brief description of each of these devices:

• ObservationControl device spawns new Observation devices, given an observation specification,

• Observation device sets up the software and hardware on the station to execute a given specification,

• AntennaField device controls a set of antennas and their properties (f.e. their positions),

• RECV device represents the hardware that controls the antennas in the station,

• TileBeam device steers the beam of the HBA tiles, actively tracking any source,

• SDP device represents generic functionality of the firmware that digitally combines antenna inputs,

• SST, XST, and BST devices control and expose statistics generated by the SDP firmware,

• Beamlet device controls the observation output data (beamlets) that stream out of the station (in LOFAR, to
CEP),

• DigitalBeam device steers the beam formed in SDP, actively tracking any source.

Auxilliary devices that control hardware are:

• APSCT device controls the ASPCT clock selection and distribution board,

• APSPU device controls the APSPU 48V distribution board,

• UNB2 device controls the Uniboards that hold the SDP FPGAs (and thus firmware).

• PSOC device controls the power sockets (230V distribution).

Finally, the stack holds the auxilliary devices that control the software devices. They connect to too many devices to
draw:

• Docker device controls the Docker containers of the software stack,

• TemperatureManager device acts on temperature alarms originating from the hardware.

15

LOFAR2.0 Station Control

16 Chapter 3. Devices

CHAPTER

FOUR

USING DEVICES

The station exposes devices, each of which is a remote software object that manages part of the station. Each device
has the following properties:

• It has a state,

• Many devices manage and represent hardware in the station,

• It exposes read-only attributes, that expose values from within the device or from the hardware it represents,

• It exposes read-write attributes, that allow controlling the functionality of the device, or the hardware it repre-
sents,

• It exposes properties, which are fixed configuration parameters (such as port numbers and timeouts),

• It exposes commands, that request the execution of a procedure in the device or in the hardware it manages.

The devices are accessed remotely using DeviceProxy objects. See Monitoring & Control on how to do this.

4.1 States

The state of a device is then queried with device.state(). Each device can be in one of the following states:

• DevState.OFF: The device is not operating,

• DevState.INIT: The device is being initialised,

• DevState.STANDBY: The device is initialised and ready to be configured further,

• DevState.ON: The device is operational,

• DevState.ALARM: The device is operational, but one or more attributes are in alarm,

• DevState.FAULT: The device is malfunctioning. Functionality cannot be counted on,

• DevState.DISABLE: The device is not operating because its hardware has been shut down.

• The device.state() function can throw an error, if the device cannot be reached at all. For example, because
it’s docker container is not running. See the Docker device on how to start it.

Each device provides the following commands to change the state:

boot()
Turn on the device, and initialise the hardware. Moves from OFF to ON.

warm_boot()
Turn on the device, but do not change the hardware. Moves from OFF to ON.

17

LOFAR2.0 Station Control

disable_hardware()
Shut down the hardware related to the device. Moves from STANDBY, ON or ALARM to DISABLE

off()
Turn the device OFF from any state.

The following procedure is a good way to bring a device to ON from any state:

def force_start(device):
if device.state() == DevState.FAULT:

device.off()
if device.state() == DevState.OFF:

device.boot()

return device.state()

Hint: If a command gives you a timeout, the command will still be running until it finishes. You just won’t know
when it does or its result. In order to increase the timeout, use device.set_timeout_millis(timeout * 1000).

4.2 FAULT

If a device enters the FAULT state, it means an error occurred that is fundamental to the operation of the software device.
For example, the connection to the hardware was lost. To see the error reason, use

status()
The verbose status of the device, f.e. the reason why the device went to FAULT.

Interaction with the device in the FAULT state is undefined, and attributes cannot be read or written. The device needs
to be reinitialised, which typically involves the following sequence of commands:

turn the device off completely first.
device.off()

turn on the device and fully reinitialise it
alternatively, device.warm_boot() can be used,
in which case no hardware is reinitialised.
device.boot()

Of course, the device could go into FAULT again, even during the boot() command, for example because the hardware
it manages is unreachable. To debug the fault condition, check the Logs of the device in question.

4.3 Initialise hardware

Most devices provide the following commands, in order to configure the hardware with base settings. Note that these
are automatically called during boot(), in this order:

initialise()
Initialise the device (connect to the hardware). Moves from OFF to STANDBY.

power_hardware_on()
For devices that control hardware, this command turns on power to it.

18 Chapter 4. Using Devices

LOFAR2.0 Station Control

power_hardware_off()
For devices that control hardware, this command turns off power to it.

set_defaults()
Upload default attribute settings from the TangoDB to the hardware.

on()
Mark the device as operational. Moves from STANDBY to ON.

4.4 Attributes

The device can be operated in ON state, where it exposes attributes and commands. The attributes can be accessed as
python properties, for example:

recvh = DeviceProxy("STAT/RECVH/1")

turn on all LED0s
recvh.RCU_LED0_RW = [True] * 32

retrieve the status of all LED0s
print(recvh.RCU_LED0_R)

The attributes with an:

• _R suffix are monitoring points, reflecting the state of the hardware, and are thus read-only.

• _RW suffix are control points, reflecting the desired state of the hardware. They are read-write, where writing
requests the hardware to set the specified value. Reading them returns the last requested value.

4.4.1 Meta data

A description of the attribute can be retrieved using:

print(recvh.get_attribute_config("RCU_LED0_R").description)

4.5 Attribute masks

Several devices employ attribute masks in order to toggle which elements in their hardware array are actually to be con-
trolled. This construct is necessary as most control points consist of arrays of values that cover all hardware elements.
These array control points are always fully sent: it is not possible to update only a single element without uploading
the rest. Without a mask, it is impossible to control a subset of the hardware.

The masks only affect writing to attributes. Reading attributes (monitoring points) always result in data for all elements
in the array.

For example, the RCU_mask_RW array is the RCU mask in the recvh device. It behaves as follows, when we interact
with the RCU_LED0_R(W) attributes:

recvh = DeviceProxy("STAT/RECVH/1")

set mask to control all RCUs
recvh.RCU_mask_RW = [True] * 32

(continues on next page)

4.4. Attributes 19

LOFAR2.0 Station Control

(continued from previous page)

request to turn off LED0 for all RCUs
recvh.RCU_LED0_RW = [False] * 32

<--- all LED0s are now off
recvh.RCU_LED0_R should show this,
if you have the RCU hardware installed.

set mask to only control RCU 3
mask = [False] * 32
mask[3] = True
recvh.RCU_mask_RW = mask

request to turn on LED0, for all RCUs
due to the mask, only LED0 on RCU 3
will be set.
recvh.RCU_LED0_RW = [True] * 32

<--- only LED0 on RCU3 is now on
recvh.RCU_LED0_R should show this,
if you have the RCU hardware installed.

20 Chapter 4. Using Devices

CHAPTER

FIVE

ANTENNAFIELD-HB (AFH), ANTENNAFIELD-LB (AFL)

The afh == DeviceProxy("STAT/AFH/HBA") device represents a set of antennas or tiles that collectively form a
High-Band antenna field.

The afl == DeviceProxy("STAT/AFL/LBA") device represents a set of antennas that collectively form a Low-Band
antenna field.

They represent a selection of inputs from one or more RECV devices, mapped onto an SDP device, annotated with
metadata such as positional information.

nr_antennas_R
The number of antennas or tiles in the antenna field.

type
uint32

It provides many settings that map onto the RECV device directly, serving as a funnel:

ANT_mask_RW
Which antennas are configured when writing settings.

type
bool[N_antennas]

Warning: Any antennas in the field that are not connected to any RECV device will return default values (f.e.
False or 0).

5.1 Observation setup

To use the AntennaField for an observation, it and its downstream RECV and SDP devices must be configured correctly.
We provide the following functionality:

Frequency_Band_RW
Which frequency band to select for each antenna, f.e. LBA_10_90. Must be compatible with the
antenna type of the field. Writing to this attribute configures and calibrates both RECV and SDP
accordingly. When read, it returns “” for any antenna that has an unknown setup.

type
str[N_antennas]

21

LOFAR2.0 Station Control

5.2 Positions

The following attributes expose positional information about the individual antennas in the field, in different formats:

Antenna_Reference_GEO_R
Reference position of each HBA tile, in latitude/longitude (degrees).

type
float64[N_tiles][2]

Antenna_Field_Reference_GEO_R
Reference position of the antenna field, in latitude/longitude (degrees).

type
float64[2]

Additionally, the ITRF and GEOHASH variants provide the same information, but in ITRF (x/y/z, metres), and in Geohash
strings, respectively.

Also, the offsets of the elements within each HBA tile are provided:

HBAT_antenna_ITRF_offsets_R
Relative position of each HBA tile element with respect to the tile reference.

type
float64[N_tiles][N_elements * 3]

shape
float64[N_tiles][N_elements][3]

5.3 Configuration

The antennas represented by the antenna field are selected by the following properties:

RECV_devices
The list of RECV devices from which antennas are selected.

type
str[]

SDP_device
The SDP device that processes the antennas.

type
str

5.3.1 Antenna mapping

These properties configure which inputs in RECV represent the power and control for each antenna:

HBAT_Power_to_RECV_mapping
Pairs of numbers (recv_idx, ant_idx) describing the inputs on which the HBAT power is con-
nected. The recv_idx is the index in RECV_devices, starting at 1. The ant_idx is the absolute
index of the antenna in the RECV device. A value of -1 means the antenna is not connected at all.

type
int32[]

22 Chapter 5. AntennaField-HB (AFH), AntennaField-LB (AFL)

LOFAR2.0 Station Control

shape
int32[][2]

Control_to_RECV_mapping
Pairs of numbers (recv_idx, ant_idx) describing the inputs on which the Antenna control is
connected. The recv_idx is the index in RECV_devices, starting at 1. The ant_idx is the absolute
index of the antenna in the RECV device. A value of -1 means the antenna is not connected at all.

5.3.2 Positions

The positions are given in ETRS, using the following properties:

Antenna_Reference_ETRS
Reference position of each HBA tile, in ETRS (x/y/z, metres).

type
float64[N_tiles][3]

Antenna_Field_Reference_ETRS
Reference position of the antenna field, in ETRS (x/y/z, metres).

type
float64[3]

ITRF_Reference_Frame
Reference frame to use for converting ETRS to ITRF (f.e. “ITRF2005”).

type
str

ITRF_Reference_Epoch
Epoch towards which to extrapolate the ITRF frame, typically in half-year increments (f.e. 2015.5).

type
float32

For the ETRS positions, there is an alternative to provide them using the respective ITRF property, which overrides the
automatic ETRS-to-ITRF conversion.

5.4 HBAT element positions

The positions of the elements within an HBA tile are handled differently. Instead of storing the positions of each of the
16 elements in each tile, we use the fact that the relative positions of the elements within each tile is fixed, and that in
LOFAR stations, all the HBA tiles of a station are on the same plane (instead of following the curvature of the Earth).
This plane is given its own station-local coordinates, the PQR system:

• It’s origin is at a chosen center of the station,

• The Q axis is aligned with an absolute North (not the North of the station, which would be a different direction
per station),

• The P axis is roughly East,

• The R axis is roughly down,

• The HBA tiles on a station all lie on the same PQ plane, so R == 0.

These facts allow us to use the following information to calculate the absolute position of each tile element. The
conversion takes the relative offsets of the elements within a tile, rotates them in PQR space, rotates those into relative

5.4. HBAT element positions 23

LOFAR2.0 Station Control

ETRS offsets, and finally into absolute positions in ETRS. See tangostationcontrol.tilebeam.hba_tile for
these computations.

recv.HBAT_PQR_rotation_angles_deg
(property) The horizontal rotation of each HBA tile in the PQ plane, in degrees (Q -> P).

type
float[96]

recv.PQR_to_ETRS_rotation_matrix
(property) The 3D rotation matrix to convert PQR coordinates into relative ETRS coordinates.

type
float[3][3]

24 Chapter 5. AntennaField-HB (AFH), AntennaField-LB (AFL)

CHAPTER

SIX

TILEBEAM, DIGITALBEAM

A primary function of the station is to combine its antenna signals to create a more sensitive signal. The antennas are
typically aimed at celestial sources moving across the sky, but can also be aimed at stationary targets, for example to
point at Earth-bound signals or to let the sky pass through the beam instead.

Given a certain direction, and knowing the speed of light, one can compute the differences in arrival time for light from
the observed source (its wave front) towards each antenna. The antenna signals are then aligned towards the source
by delaying the signal inputs based on these differences. The antennas closest to the source get the largest delay. For
celestial sources, the light is assumed to be infinitely far away and thus travel in parallel towards each antenna, greatly
simplifying the calculations involved.

In practice, antenna signals can only be coarsely delayed. Fine delay compensation consists of rotating the signal inputs
to compensate for the remaining differences in phase. The amount of rotation is frequency dependent. The aligned
signals are subsequently added, creating a single signal output of higher sensitivity towards the observed source, albeit
with a narrower field of view.

Beam tracking therefor requires a pointing direction in which to observe, as well as the positions of the antennas
involved. Finally, the antennas need to be periodically realigned to track moving sources. We distinguish the following
concepts:

• Beam forming is combining individual element signals into one. This is performed by the HBAT hardware and
SDP firmware,

• Beam steering is uploading the delays or weights to the beam-forming hardware, in order to point the beam in a
certain direction,

• Beam tracking is updating the beam steering over time to track a celestial target, compensating for the Earth’s
movement through space.

The tilebeam == DeviceProxy("STAT/TileBeam/1") device configures the HBA beam former in each HBA tile,
which adds the signals of its 16 elements within the tile. The output signal of these tiles is used as input for the digital
beam former (just like the direct output of an LBA).

The digitalbeam == DeviceProxy("STAT/DigitalBeam/1") device configures the digital beam formed in SDP
from antenna or tile inputs. The output signal in SDP are beamlets, which can

Both devices beamform the antennas configured in its associated AntennaField device, but differ in what they beam-
form and with respect to which position:

• TileBeam:

– Beamforms HBA elements in the HBA tiles of its AntennaField device,

– Uses antennafield.Antenna_Reference_ITRF_R as the reference position for each tile,

– Allows a different pointing per HBA tile,

– N_output := antennafield.nr_antennas_R,

25

LOFAR2.0 Station Control

– Uploads the computed weights to antennafield.HBAT_bf_delay_steps_RW,

– These weights are actually delay steps to be applied in the tile for each element.

• DigitalBeam

– Beamforms all the antennas or tiles of its AntennaField device,

– Uses antennafield.Antenna_Field_Reference_ITRF_R as the reference position,

– Allows a different pointing per beamlet,

– N_output := NUM_BEAMLETS = 488,

– Uploads the computed weights to beamlet.FPGA_bf_weights_pp_RW,

– These weights are actually complex phase rotations to be applied on each antenna input.

6.1 Common functionality

The following functionality holds for both TileBeam and DigitalBeam.

6.1.1 Beam Tracking

Beam tracking automatically recomputes and reapplies pointings periodically, and immediately when new pointings
are configured. It exposes the following interface:

Tracking_enabled_R
Whether beam tracking is running.

type
bool

Pointing_direction_RW
The direction in which the beam should be tracked for each antenna. The beam tracker will steer the
beam periodically, and explicitly whenever the pointings change.

type
str[N_output][3]

Pointing_direction_R
The last applied pointing of each antenna.

type
str[N_output][3]

Pointing_timestamp_R
The timestamp for which the last set pointing for each antenna was applied and set (in seconds since
1970).

type
float[N_output][3]

A pointing describes the direction in the sky, and consists of a set of coordinates and the relevant coordinate system.
They are represented as a tuple of 3 strings: ("coordinate_system", "angle1", "angle2"), where the interpre-
tation of angle1 and angle2 depends on the coordinate system used. For example:

• ("AZELGEO", "0deg", "90deg") points at Zenith (Elevation = 90°, with respect to the Earth geode),

• ("J2000", "0deg", "90deg") points at the North Celestial Pole (Declination = 90°),

26 Chapter 6. TileBeam, DigitalBeam

LOFAR2.0 Station Control

• ("SUN", "0deg", "0deg") points at the centre of the Sun.

For a full list of the supported coordinate systems, see https://casacore.github.io/casacore/classcasacore_1_
1MDirection.html

6.1.2 Beam Steering

The beam steering is responsible for pointing the beams at a target, by converting the pointing to hardware-specific
weights and uploading them to the corresponding device. The beam steering is typically controlled by the beam tracker.
To point the antennas in any direction manually, you should disable beam tracking first:

Tracking_enabled_RW
Enable or disable beam tracking (default: True).

type
bool

set_pointing(pointings)
Point the beams towards the specified pointings[N_output][3] for all outputs.

returns
None

The direction of each pointing is derived using casacore, which must be periodically calibrated, see also Celestial &
Geodetic Calibration.

6.1.3 Timing

The beam tracking applies an update each interval, and aims to apply it at timestamps (now %
Beam_tracking_interval) - Beam_tracking_application_offset. To do so, it starts its computations
every interval Beam_tracking_preparation_period seconds before. It then starts to compute the weights, waits
to apply them, and applies them by uploading the weights to the underlying hardware.

The following properties are used:

Beam_tracking_interval
Update the beam tracking at this interval (seconds).

type
float

Beam_tracking_application_offset
Update the beam tracking this amount of time before the next interval (seconds).

type
float

Beam_tracking_preparation_period
Prepare time for each period to compute and upload the weights (seconds).

type
float

The following timers allow you to track the durations of each stage:

Duration_compute_weights_R
Amount of time it took to compute the last weights (seconds).

type
float

6.1. Common functionality 27

https://casacore.github.io/casacore/classcasacore_1_1MDirection.html
https://casacore.github.io/casacore/classcasacore_1_1MDirection.html

LOFAR2.0 Station Control

Duration_preparation_period_slack_R
Amount of time left in the prepration period between computing and uploading the weights (seconds).

type
float

Duration_apply_weights_R
Amount of time it took to apply (upload) the weights (seconds).

type
float

6.2 DigitalBeam

The DigitalBeam device applies the following configuration to compute each beamlet. Here, N_ant :=
antennafield.nr_antennas_R and N_beamlet := NUM_BEAMLETS == N_output.

Antenna_Set_RW
Which antenna set (supported by the antenna field) is requested to be beam formed.

type
str

Antenna_Mask_R
Which antennas are requested to be beam formed, according to the selected antenna set.

type
bool[N_ant]

antennafield.Antenna_Usage_Mask_R
Which antennas are OK to be used (not broken, disabled, etc).

type
bool[N_ant]

beamlet.subband_select_RW
Which subband to beamform for each beamlet.

type
uint32[N_beamlet]

sdp.subband_frequency_R
Central frequency of each subband (in Hz).

type
float

28 Chapter 6. TileBeam, DigitalBeam

CHAPTER

SEVEN

BEAMLET

The beamlet == DeviceProxy("STAT/Beamlet/1") device controls the creation and emission of beamlets. Each
beamlet is a signal stream characterised by:

• The set of antennas to use as input,

• The pointing towards which to beamform these antennas,

• A single subband (frequency) selected from the PPF.

29

LOFAR2.0 Station Control

30 Chapter 7. Beamlet

CHAPTER

EIGHT

RECVH, RECVL

The recvh == DeviceProxy("STAT/RECVH/1") device controls the RCUs for HBA tiles.

The recvl == DeviceProxy("STAT/RECVL/1") device controls the RCUs for LBA antennas.

Central to their operations are the masks (see also Attribute masks):

RCU_mask_RW
Controls which RCUs will actually be configured when attributes referring to RCUs are written.

type
bool[N_RCUs]

Ant_mask_RW
Controls which antennas will actually be configured when attributes referring to antennas are written.

type
bool[N_antennas]

Typically, N_RCUs == 32, and N_antennas == 96.

Note: The antennas are hooked up to the RCUs in sets of 3, in order.

8.1 Error information

These attributes summarise the basic state of the device. Any elements which are not present in FPGA_mask_RW will
be ignored and thus not report errors:

RCU_error_R
Whether the RCUs appear usable.

type
bool[N_RCUs]

ANT_error_R
Whether the antennas appear usable.

type
bool[N_antennas]

RCU_IOUT_error_R
Whether there are alarms on any of the amplitudes in the measured currents.

type
bool[N_RCUs]

31

LOFAR2.0 Station Control

RCU_VOUT_error_R
Whether there are alarms on any of the voltages in the measured currents.

type
bool[N_RCUs]

RCU_TEMP_error_R
Whether there are alarms on any of the temperatures. NB: These values are also exposed for unused
RCUs (the RCU_mask_RW is ignored).

type
bool[N_RCUs]

32 Chapter 8. RECVH, RECVL

CHAPTER

NINE

SDP FIRMWARE

The sdpfirmware == DeviceProxy("STAT/SDPFirmware/1")` device controls the firmware functionalities re-
lated to the digital signal processing in SDP device. Central to its operation is the mask (see also Attribute masks):

TR_fpga_mask_RW
Controls which FPGAs will actually be configured when attributes referring to FPGAs are written.

type
bool[N_fpgas]

Typically, N_fpgas == 16.

See the following links for a full description of the SDP monitoring and control points:

• https://support.astron.nl/confluence/pages/viewpage.action?spaceKey=L2M&title=L2+STAT+Decision%3A+
SC+-+SDP+OPC-UA+interface

• https://plm.astron.nl/polarion/#/project/LOFAR2System/wiki/L2%20Interface%20Control%20Documents/
SC%20to%20SDP%20ICD

9.1 Basic configuration

The following points are significant for the operations of this device:

TR_fpga_communication_error_R
Whether the FPGAs can be reached.

type
bool[N_fpgas]

9.2 Error information

These attributes summarise the basic state of the device. Any elements which are not present in FPGA_mask_RW will
be ignored and thus not report errors:

FPGA_error_R
Whether the FPGAs appear usable.

type
bool[N_fpgas]

33

https://support.astron.nl/confluence/pages/viewpage.action?spaceKey=L2M&title=L2+STAT+Decision%3A+SC+-+SDP+OPC-UA+interface
https://support.astron.nl/confluence/pages/viewpage.action?spaceKey=L2M&title=L2+STAT+Decision%3A+SC+-+SDP+OPC-UA+interface
https://plm.astron.nl/polarion/#/project/LOFAR2System/wiki/L2%20Interface%20Control%20Documents/SC%20to%20SDP%20ICD
https://plm.astron.nl/polarion/#/project/LOFAR2System/wiki/L2%20Interface%20Control%20Documents/SC%20to%20SDP%20ICD

LOFAR2.0 Station Control

34 Chapter 9. SDP Firmware

CHAPTER

TEN

SDP

The sdp == DeviceProxy("STAT/SDP/1")` device controls the digital signal processing in SDP, performed by the
firmware on the FPGAs on the Uniboards.

See the following links for a full description of the SDP monitoring and control points:

• https://support.astron.nl/confluence/pages/viewpage.action?spaceKey=L2M&title=L2+STAT+Decision%3A+
SC+-+SDP+OPC-UA+interface

• https://plm.astron.nl/polarion/#/project/LOFAR2System/wiki/L2%20Interface%20Control%20Documents/
SC%20to%20SDP%20ICD

10.1 Basic configuration

The following points are significant for the operations of this device:

FPGA_processing_enable_R
Whether the FPGA is processing its input.

type
bool[N_fpgas]

10.2 Frequency management

To setup the input and output frequencies, the following attributes are offered:

antenna_RW
The type of antenna connected to each input, as provided by the user (HBA or LBA).

type
str[N_fpgas][N_ants_per_fpga]

clock_RW
The FPGA clock, in Hz (200_000_000 or 160_000_000). NB: This informs the calculations which
clock should be assumed. The clock is not actually toggled.

type
uint32

nyquist_zone_RW
The NyQuist zone of the input, per input (0, 1, or 2).

type
uint32[N_fpgas][N_ants_per_fpga]

35

https://support.astron.nl/confluence/pages/viewpage.action?spaceKey=L2M&title=L2+STAT+Decision%3A+SC+-+SDP+OPC-UA+interface
https://support.astron.nl/confluence/pages/viewpage.action?spaceKey=L2M&title=L2+STAT+Decision%3A+SC+-+SDP+OPC-UA+interface
https://plm.astron.nl/polarion/#/project/LOFAR2System/wiki/L2%20Interface%20Control%20Documents/SC%20to%20SDP%20ICD
https://plm.astron.nl/polarion/#/project/LOFAR2System/wiki/L2%20Interface%20Control%20Documents/SC%20to%20SDP%20ICD

LOFAR2.0 Station Control

FPGA_spectral_inversion_RW
Whether to invert the spectrum, both within and across all subbands. This is required in odd-
numbered NyQuist zones to have the signal increase in frequency over the subbands. This setting is
automatically configured by setting nyquist_zone_RW but can be overwritten explicitly as well.

type
bool[N_fpgas][N_ants_per_fpga]

All of these are required to compute the actual frequencies of the subbands constructed by the PPF inside the FPGA.
For convenience, the device explicitly exposes these:

subband_frequency_R
The central frequency of each subband for each input, in Hz.

type
float64[N_fpgas][N_ants_per_fpga][N_subbands]

10.3 Data-quality information

The following fields describe the data quality (see also Signal Chain):

FPGA_signal_input_mean_R
Mean value of the last second of input (in ADC quantisation units). Should be close to 0.

type
double[N_fpgas][N_ants_per_fpga]

FPGA_signal_input_rms_R
Root means square value of the last second of input (in ADC quantisation units). rms^2 = mean^2
+ std^2. Values above 2048 indicate strong RFI. Values of 0 indicate a lack of signal input.

type
double[N_fpgas][N_ants_per_fpga]

10.4 Error information

These attributes summarise the basic state of the device. Any elements which are not present in FPGA_mask_RW will
be ignored and thus not report errors:

FPGA_procesing_error_R
Whether the FPGAs are processing their input from the RCUs. NB: This will also raise an error if
the Waveform Generator is enabled.

type
bool[N_fpgas]

36 Chapter 10. SDP

LOFAR2.0 Station Control

10.5 Version Information

The following fields provide version information:

FPGA_firmware_version_R
The active firmware images.

type
str[N_fpgas]

FPGA_hardware_version_R
The versions of the boards hosting the FPGAs.

type
str[N_fpgas]

TR_software_version_R
The version of the server providing the OPC-UA interface.

type
str[N_fpgas]

10.6 Waveform Generator

The antenna input of SDP can be replaced by an internal waveform generator for debugging and testing purposes. The
generator is configured per antenna per FPGA:

Note: The Waveform Generator needs to be toggled off and on using FPGA_wg_enable_RW for new settings to become
active on the station.

FPGA_wg_enable_RW
Whether the waveform generator is enabled for each input.

type
bool[N_fpgas][N_ants_per_fpga]

FPGA_wg_phase_RW
The phases of the generated waves (in degrees). The generator needs to be turned off and on if this
is changed, in order to bring the generators in sync.

type
float32[N_fpgas][N_ants_per_fpga]

FPGA_wg_frequency_RW
The frequencies of the generated waves (in Hz). The frequency of a subband s is LBA: s * 200e6/
1024, HBA low band: (512 + s) * 200e6/1024, HBA high band: (1024 + s) * 200e6/
1024.

type
float32[N_fpgas][N_ants_per_fpga]

FPGA_wg_amplitude_RW
The amplitudes of the generated waves. Useful is a value of 0.1, as higher risks clipping.

type
float32[N_fpgas][N_ants_per_fpga]

10.5. Version Information 37

LOFAR2.0 Station Control

10.6.1 Usage example

For example, the following code inserts a wave on LBA subband 102 on FPGAs 8 - 11:

configure FPGAs to control
sdpfirmware.TR_fpga_mask_RW = [False] * 8 + [True] * 4 + [False] * 4

configure waveform generator
sdp.FPGA_wg_phase_RW = [[0] * 12] * 16
sdp.FPGA_wg_amplitude_RW = [[0.1] * 12] * 16
sdp.FPGA_wg_frequency_RW = [[102 * 200e6/1024] * 12] * 16

toggle and enable waveform generator
sdp.FPGA_wg_enable_RW = [[False] * 12] * 16
sdp.FPGA_wg_enable_RW = [[True] * 12] * 16

38 Chapter 10. SDP

CHAPTER

ELEVEN

BST, SST, AND XST

The bst == DeviceProxy("STAT/BST/1"), sst == DeviceProxy("STAT/SST/1") and xst ==
DeviceProxy("STAT/XST/1") devices manages the BSTs (beamlet statistics) SSTs (subband statistics) and
XSTs (crosslet statistics), respectively. The statistics are emitted piece-wise through UDP packets by the FPGAs on
the Uniboards in SDP. By default, each device configures the statistics to be streamed to itself (the device), from where
the user can obtain them.

The statistics are exposed in two ways, as:

• Attributes, representing the most recently received values,

• TCP stream, to allow the capture and recording of the statistics over any period of time.

If the statistics are not received or zero, see I am not receiving any XSTs and/or SSTs from SDP!.

See the following links for a full description of the BST, SST, and XST monitoring and control points:

• https://support.astron.nl/confluence/pages/viewpage.action?spaceKey=L2M&title=L2+STAT+Decision%3A+
SC+-+SDP+OPC-UA+interface

• https://plm.astron.nl/polarion/#/project/LOFAR2System/wiki/L2%20Interface%20Control%20Documents/
SC%20to%20SDP%20ICD

11.1 BST Statistics attributes

11.2 SST Statistics attributes

The SSTs represent the amplitude of the signal in each subband, for each antenna, as an integer value. They are exposed
through the following attributes:

sst_R
Amplitude of each subband, from each antenna.

type
uint64[N_ant][N_subbands]

sst_timestamp_R
Timestamp of the data, per antenna.

type
uint64[N_ant]

integration_interval_R
Timespan over which the SSTs were integrated, per antenna.

39

https://support.astron.nl/confluence/pages/viewpage.action?spaceKey=L2M&title=L2+STAT+Decision%3A+SC+-+SDP+OPC-UA+interface
https://support.astron.nl/confluence/pages/viewpage.action?spaceKey=L2M&title=L2+STAT+Decision%3A+SC+-+SDP+OPC-UA+interface
https://plm.astron.nl/polarion/#/project/LOFAR2System/wiki/L2%20Interface%20Control%20Documents/SC%20to%20SDP%20ICD
https://plm.astron.nl/polarion/#/project/LOFAR2System/wiki/L2%20Interface%20Control%20Documents/SC%20to%20SDP%20ICD

LOFAR2.0 Station Control

type
float32[N_ant]

subbands_calibrated_R
Whether the subband data was calibrated using the subband weights.

type
bool[N_ant]

Typically, N_ant == 192, and N_subbands == 512.

11.3 XST Statistics attributes

The XSTs represent the cross-correlations between each pair of antennas, as complex values. The phases and amplitudes
of the XSTs represent the phase and amplitude difference between the antennas, respectively. They are exposed as a
matrix xst[a][b], of which only the triangle a<=b is filled, as the cross-correlation between antenna pairs (b,a) is
equal to the complex conjugate of the cross-correlation of (a,b). The other triangle contains incidental values, but
will be mostly 0.

Complex values which cannot be represented in Tango attributes. Instead, the XST matrix is exposed as both their
carthesian and polar parts:

xst_power_R, xst_phase_R
Amplitude and phase (in radians) of the crosslet statistics.

type
float32[N_ant][N_ant]

xst_real_R, xst_imag_R
Real and imaginary parts of the crosslet statistics.

type
float32[N_ant][N_ant]

xst_timestamp_R
Timestamp of each block.

type
int64[N_blocks]

integration_interval_R
Timespan over which the XSTs were integrated, for each block.

type
float32[N_blocks]

Typically, N_ant == 192, and N_blocks == 136.

The metadata refers to the blocks, which are emitted by the FPGAs to represent the XSTs between 12 x 12 consecutive
antennas. The following code converts block numbers to the indices of the first antenna pair in a block:

from tangostationcontrol.common.baselines import baseline_from_index

def first_antenna_pair(block_nr: int) -> int:
coarse_a, coarse_b = baseline_from_index(block_nr)
return (coarse_a * 12, coarse_b * 12)

Conversely, to calculate the block index for an antenna pair (a,b), use:

40 Chapter 11. BST, SST, and XST

LOFAR2.0 Station Control

from tangostationcontrol.common.baselines import baseline_index

def block_nr(a: int, b: int) -> int:
return baseline_index(a // 12, b // 12)

11.3.1 Configuring the XSTs

The XSTs can be configured with several settings:

Note: The XST processing needs to be toggled off and on using FPGA_xst_processing_enable_RW for new settings
to become active on the station.

FPGA_xst_processing_enable_RW
Whether XSTs are computed on each FPGA.

type
bool[N_fpgas]

FPGA_xst_integration_interval_RW
The time interval to integrate over, per FPGA, in seconds.

type
float[N_fpgas]

FPGA_xst_subband_select_RW
The subband to cross correlate, per FPGA. Note: only the entries [x][1] should be set, the rest
should be zero.

type
uint32[N_fpgas][8]

11.4 Subscribe to statistics streams

The TCP stream interface allows a user to subscribe to the statistics packet streams, combined into a single TCP stream.
The statistics will be streamed until the user disconnects, or the device is turned off. Any number of subscribers is
supported, as bandwidth allows. Simply connect to the following port:

Device TCP end point
SST localhost:5101
XST localhost:5102

The easiest way to capture this stream is to use our statistics_writer, which will capture the statistics and store
them in HDF5 file(s). The writer:

• computes packet boundaries,

• processes the data of each packet, and stores their values into the matrix relevant for the mode,

• stores a matrix per timestamp,

• stores packet header information per timestamp, as HDF5 attributes,

• writes to a new file at a configurable interval.

11.4. Subscribe to statistics streams 41

LOFAR2.0 Station Control

To install the software locally and run the writer:

pip install 'tangostationcontrol@git+https://git.astron.nl/lofar2.0/tango.git
→˓#subdirectory=tangostationcontrol'
l2ss-statistics-writer --mode SST --host localhost

The correct port will automatically be chosen, depending on the given mode. See also l2ss-statistics-writer
-h for more information.

The writer can also parse a statistics stream stored in a file. This allows the stream to be captured and processed
independently. Capturing the stream can for example be done using netcat:

nc localhost 5101 > SST-packets.bin

42 Chapter 11. BST, SST, and XST

CHAPTER

TWELVE

STATIONMANAGER

The stationmanager == DeviceProxy("STAT/StationManager/1") Controls the station

43

LOFAR2.0 Station Control

44 Chapter 12. StationManager

CHAPTER

THIRTEEN

DOCKER

The docker == DeviceProxy("STAT/Docker/1") device controls the docker containers. It allows starting and
stopping them, and querying whether they are running. Each container is represented by two attributes:

<container>_R
Returns whether the container is running.

type
bool

<container>_RW
Set to True to start the container, and to False to stop it.

type
bool

Warning: Do not stop the tango container, as doing so cripples the Tango infrastructure, leaving the station inop-
erable. It is also not wise to stop the device_docker container, as doing so would render this device unreachable.

45

LOFAR2.0 Station Control

46 Chapter 13. Docker

CHAPTER

FOURTEEN

PSOC

The psoc == DeviceProxy("STAT/PSOC/1") device controls the Power Distribution Unit (PSOC).

47

LOFAR2.0 Station Control

48 Chapter 14. PSOC

CHAPTER

FIFTEEN

CCD

The ccd == DeviceProxy("STAT/CCD/1") Clock Control Device controls the clock

49

LOFAR2.0 Station Control

50 Chapter 15. CCD

CHAPTER

SIXTEEN

EC

The ec == DeviceProxy("STAT/EC/1") device controls the Environmental Control (EC).

51

LOFAR2.0 Station Control

52 Chapter 16. EC

CHAPTER

SEVENTEEN

CONFIGURATION

The Configuration == DeviceProxy("STAT/Configuration/1") Configuration Device controls the loading,
updating, exposing and dumping of the whole Station Configuration

53

LOFAR2.0 Station Control

54 Chapter 17. Configuration

CHAPTER

EIGHTEEN

TEMPERATUREMANAGER

temperature_manager == DeviceProxy("STAT/TemperatureManager/1")

55

LOFAR2.0 Station Control

56 Chapter 18. TemperatureManager

CHAPTER

NINETEEN

DEVICE CONFIGURATION

The devices receive their configuration from two sources:

• The TangoDB database, for static properties,

• Externally, from the user, or a control system, that set control attributes (see the section for each device for what
to set, and Attributes for how to set them).

19.1 TangoDB

The TangoDB database is a persistent store for the properties of each device. The properties encode static settings,
such as the hardware addresses, and default values for control attributes.

Each device queries the TangoDB for the value of its properties during the boot() (or initialise()) call. De-
fault values for control attributes can then be applied by explicitly calling set_defaults(). The boot device also
calls set_defaults() when initialising the station. The rationale being that the defaults can be applied at boot, but
shouldn’t be applied automatically during operations, as not to disturb running hardware.

19.2 Device interaction

The properties of a device can be queried from the device directly:

get a list of all the properties
property_names = device.get_property_list("*")

fetch the values of the given properties. returns a {property: value} dict.
property_dict = device.get_property(property_names)

Properties can also be changed:

changeset = { "property": "new value" }

device.put_property(changeset)

Note that new values for properties will only be picked up by the device during boot() (or initialise()), so you
will have to turn the device off and on.

57

LOFAR2.0 Station Control

19.3 Command-line interaction

The content of the TangoDB can be dumped from the command line using:

sbin/dsconfig.sh --dump > tangodb-dump.json

and changes can be applied using:

sbin/dsconfig.sh --update changeset.json

Note: The dsconfig docker container needs to be running for these commands to work.

58 Chapter 19. Device Configuration

CHAPTER

TWENTY

ENTER YOUR LOFAR2.0 HARDWARE CONFIGURATION

The software will need to be told various aspects of your station configuration, for example, the hostnames of the station
hardware to control. The following settings are installation specific, and are stored as properties in the TangoDB.

Stock configurations are provided for several stations, as well as using simulators to simulate the station’s interface
(which is the default after bootstrapping a station). These are provided in the CDB/stations/ directory, and can be
loaded using for example:

sbin/dsconfig.sh --update CDB/stations/LTS_ConfigDb.json

The following sections describe the settings that are station dependent, and thus must or can be set.

20.1 Mandatory settings

Without these settings, you will not obtain the associated functionality:

RECV.OPC_Server_Name
Hostname of RECVTR.

type
string

UNB2.OPC_Server_Name
Hostname of UNB2TR.

type
string

SDPFirmware.OPC_Server_Name
Hostname of SDPTR.

type
string

SDP.OPC_Server_Name
Hostname of SDPTR.

type
string

SST.OPC_Server_Name
Hostname of SDPTR.

type
string

59

LOFAR2.0 Station Control

SST.FPGA_sst_offload_hdr_eth_destination_mac_RW_default
MAC address of the network interface on the host running this software stack, on which the SSTs are
to be received. This network interface must be capable of receiving Jumbo (MTU=9000) frames.

type
string[N_fpgas]

SST.FPGA_sst_offload_hdr_ip_destination_address_RW_default
IP address of the network interface on the host running this software stack, on which the SSTs are to
be received.

type
string[N_fpgas]

XST.OPC_Server_Name
Hostname of SDPTR.

type
string

XST.FPGA_xst_offload_hdr_eth_destination_mac_RW_default
MAC address of the network interface on the host running this software stack, on which the XSTs
are to be received. This network interface must be capable of receiving Jumbo (MTU=9000) frames.

type
string[N_fpgas]

XST.FPGA_xst_offload_hdr_ip_destination_address_RW_default
IP address of the network interface on the host running this software stack, on which the XSTs are to
be received.

type
string[N_fpgas]

20.2 Optional settings

These settings make life nicer, but are not strictly necessary to get your software up and running:

RECV.Ant_mask_RW_default
Which antennas are installed.

type
bool[N_RCUs][N_antennas_per_RCU]

SDP.RCU_mask_RW_default
Which RCUs are installed.

type
bool[N_RCUs]

UNB2.UNB2_mask_RW_default
Which Uniboard2s are installed in SDP.

type
bool[N_unb]

SDP.TR_fpga_mask_RW_default
Which FPGAs are installed in SDP.

type
bool[N_fpgas]

60 Chapter 20. Enter your LOFAR2.0 Hardware Configuration

LOFAR2.0 Station Control

SDP.FPGA_sdp_info_station_id_RW_default
Numeric identifier for this station.

type
uint32[N_fpgas]

20.2. Optional settings 61

LOFAR2.0 Station Control

62 Chapter 20. Enter your LOFAR2.0 Hardware Configuration

CHAPTER

TWENTYONE

OBSERVING

This chapter describes how to start and manage observations.

21.1 Starting an observation

To observe with a station, you must construct the observation’s specifications, and hand it to the DeviceProxy("STAT/
ObservationControl/1") device to start:

observation_spec = {
"observation_id": 12345,
"start_time": "2106-02-07T00:00:00",
"stop_time": "2106-02-07T01:00:00",
"antenna_field": "HBA",
"antenna_set": "ALL",
"filter": "HBA_210_250",
"dithering": {
"enabled": true,
"power": -4.0,
"frequency": 102000000

},
"SAPs": [{

"subbands": [10, 20, 30],
"pointing": { "angle1": 1.0, "angle2": 0, "direction_type": "J2000" }

}, {
"subbands": [40, 50, 60],
"pointing": { "angle1": 2.0, "angle2": 0, "direction_type": "J2000" }

}],
"HBA": {
"DAB_filter": true,
"tile_beam": { "angle1": 1.5, "angle2": 0, "direction_type": "J2000" }

}
}

import json
obs_control = DeviceProxy("STAT/ObservationControl/1")
obs_control.add_observation(json.dumps(observation_spec))

The above specification contains the following parameters:

63

LOFAR2.0 Station Control

Parameter Description
observation_id User-specified unique reference to this observation.
start_time automatically start observing when this timestamp is reached. (optional)
stop_time automatically stop observing when this timestamp is reached.
antenna_field Which antenna field to use (LBA, HBA, HBA0, HBA1).
antenna_set Which subset of antennas to use (ALL, INNER, OUTER, EVEN, ODD).
filter Which band filter to use (LBA_10_90, LBA_30_70, HBA_110_190, HBA_170_230,

HBA_210_250).
dithering.
enabled

Whether to add analog dithering noise to increase linearity. (optional)

dithering.power Power (in dB) to apply for dithering (-4.0 to -25.0). (optional)
dithering.
frequency

Dithering frequency (in Hz). (optional)

SAPs List of pointings and frequencies (subbands) to track and beam form.
HBA.DAB_filter Enable the analog filter on the RCUs for DAB radio frequencies. (optional)
HBA.tile_beam Pointing to track with the HBA tiles (optional). (specify for HBA)

This will configure the specified antenna field (f.e. HBA) as follows:

• STAT/DigitalBeam/HBA is configured to beam form the antennas in the specified antenna_set, track all
pointings given in SAPs[x].pointing, and produce beamlets for all subbands in SAPs[x].subbands. The
beamlets mirror the subbands in the order in which they are specified,

• The observation_id is used to annotate the beamlet data produced by this observation,

• STAT/AFH/HBA is configured to use the specified filter for the RCUs,

• STAT/TileBeam/HBA is configured to beam form all HBA tiles, tracking the given tile_beam pointing.

21.1.1 Observation Output

The effect of the observations can be observed through the following means, all of which are managed independently
from the observation:

• The beamlets streaming out of the station towards the processing cluster. The Beamlet device is responsible for
managing and monitoring this data flow,

• The statistics streaming out of the station towards the control softwate. The XST/SST/BST devices are responsi-
ble, and allow inspection of this data flow,

• The various input signal monitoring points available in the SDP device, such as FPGA_input_signal_mean_RW.

21.1.2 Life cycle

The ObservationControl device will start each Observation when its start time is reached or past, and will stop it at the
specified stop time. You can also force this to happen:

obs_control = DeviceProxy("STAT/ObservationControl/1")
obs_control.start_observation_now(12345) # starts observation 12345 now, regardless of␣
→˓its specified start time
obs_control.stop_observation_now(12345) # stops observation 12345 now, regardless of␣
→˓its specified stop time

64 Chapter 21. Observing

LOFAR2.0 Station Control

21.2 Managing observation(s)

To manage running observations, we can interact with ObservationControl:

>>> # Check which observations are known (running or yet to run)
>>> obs_control.observations_R
array([12345])

>>> # Check which observations are running
>>> obs_control.running_observations_R
array([12345])

>>> # Stop a running observation
>>> obs_control.stop_observation_now(12345)

>>> # Stop all running observations
>>> obs_control.stop_all_observations_now()

Alternatively, we can inspect a running observation more closely. Each observation is represented by its own device:
STAT/Observation/$id, so if observation 12345 has been started, we can do the following:

observation = DeviceProxy("STAT/Observation/12345")

This device exposes its settings as individual attributes, as well as:

alive_R
Ever-increasing value as long as the observation is running. Allows one to check whether monitoring
has become stale.

type
int

observation_settings_RW
JSON string of the specifications of this observation. NB: This attribute cannot be written once the
observation has started.

type
str

observation_id_R
(et al) Each specification parameter can be retrieved individually.

type
(depends on specification parameter)

21.2. Managing observation(s) 65

LOFAR2.0 Station Control

66 Chapter 21. Observing

CHAPTER

TWENTYTWO

SIGNAL CHAIN

The station hardware collectively processes the analog signals received by the antena dipoles, resulting in either statistics
(SST/BST/XST) or beamlets. This signal chain can be monitored as it flows through the hardware as follows:

22.1 RECV: Data reception

The RCU boards can receive input from three sources: an LBA, an HBA tile, and a signal or noise generator.

A typical station has rcu == 32 RCUs, each of which has antenna == 3 inputs.

22.1.1 Input

• recv.RCU_PWR_ANT_on_R[rcu][antenna] indicates whether each antenna is powered. If not, the RCU will
emit zeroes if an LBA or HBA tile is attached.

• recv.RCU_PWR_ANALOG_on_R[rcu] indicates whether the analog power is enabled to each RCU. If not, the
RCU will emit zeroes if an LBA or HBA tile is attached.

• recv.RCU_PWR_DIGITAL_on_R[rcu] indicates whether the digital power is enabled to each RCU. If not, the
RCU will emit zeroes.

22.1.2 Processing

• recv.RCU_band_select_R[rcu][antenna] indicates which band is selected for each antenna (1 = 10MHz,
2 = 30MHz), which affects its sensitivity.

• recv.RCU_attenuator_dB_R[rcu][antenna] is the attenuation for each antenna, which affects its ampli-
tude.

• recv.RCU_DTH_ON_R[rcu][antenna] indicates whether the dither source is on, which affects the signal qual-
ity:

– recv.RCU_DTH_freq_R[rcu][antenna] is the frequency of the dither source, in Hz.

67

LOFAR2.0 Station Control

22.2 SDP: Digital signal processing

The SDP can process three kinds of input: antenna data, generated waveforms, and no input, and process this into four
kinds of output: beamlets, BSTs, SSTs, and XSTs.

A typical station has fpga == 16 FPGAs, each of which has input == 12 inputs.

22.2.1 Input

• sdp.FPGA_wg_enable_R[fpga][input], indicates whether waveforms are generated (True) or antenna input
is used (False):

– sdp.FPGA_wg_frequency_R[fpga][input] indicates the frequency of the generated wave,

– sdp.FPGA_wg_amplitude_R[fpga][input] indicates the amplitude of the generated wave,

– sdp.FPGA_wg_phase_R[fpga][input] indicates the phase of the generated wave.

• sdp.FPGA_signal_input_mean_R[fpga][input] shows the input signal strength compared to full scale (FS)
= 8192.

• sdp.FPGA_signal_input_rms_R[fpga][input] shows the root means square of the input.

The signal input mean and rms behave as follows:

Input Configuration Signal Mean Signal RMS
None 0 0
Waveform Generator frequency = 0 amplitude * sin(phase) amplitude * 8192 / 2
Waveform Generator frequency > 0 0 amplitude * 8192 / 2
Antenna > 0 > 0

22.2.2 Processing

• sdp.FPGA_processing_enable_R[fpga] indicates whether the FPGA processes its input. If not, zeroes are
produced for all outputs.

• sdp.FPGA_signal_input_samples_delay_R[fpga][input] indicates a per-input delay to be applied, in
units of 5 ns. This results in a frequency-dependent phase change of the input.

• sdp.FPGA_subband_weights_R[fpga][input * subband] indicates a per-subband and per-input weight
factor. 8192 is unit weight, 0 means the input will be erased. Anything else results in a phase and/or amplitude
change of the input.

22.2.3 SST output

• sst.FPGA_sst_offload_enable_R indicates whether SSTs are emitted at all.

• sst.nof_valid_payloads_R[fpga] is the number of packets received from each FPGA.

• sst.sst_R[fpga * input][subband] is the amplitude of the signal over the configured integration interval:

– sst.FPGA_sst_offload_weighted_subbands_R[fpga * input] indicates whether the sdp.
FPGA_subband_weights_R are applied when calculating the SSTs,

– sst.integration_interval_R[fpga * input] is the integration interval of the provided SSTs,

68 Chapter 22. Signal Chain

LOFAR2.0 Station Control

– sst.sst_timestamp_R[fpga * input] is when the SSTs were received,

– sst.last_packet_timestamp_R is when the last SST from any FPGA was received.

If the SSTs are not received, or filled with zeroes, see also I am not receiving any XSTs and/or SSTs from SDP!.

22.2.4 XST output

• xst.FPGA_xst_offload_enable_R indicates whether XSTs are emitted at all.

• xst.FPGA_xst_processing_enable_R indicates whether XSTs are computed. If not, zeroes are produced.

• xst.nof_valid_payloads_R[fpga] is the number of packets received from each FPGA.

• xst.xst_phase_R[fpga * input][fpga * input] is the phase angle between each pair of inputs, and is
defined only for [a][b] with a <= b:

– xst.FPGA_xst_subband_select_R[fpga][8] contains the subband for which to compute the XSTs.
Currently, one subband is supported, which should be on index [fpga][1],

– xst.FPGA_integration_interval_R[fpga] is the integration interval for the XSTs,

– xst.xst_timestamp_R[136] is when the XSTs were received, per block (see below),

– xst.last_packet_timestamp_R is when the last XST from any FPGA was received.

• xst.xst_amplitude_R[fpga * input][fpga * input] is the correlated amplitude between two inputs,
and is subject to the same restrictions as xst.xst_phase_R.

If the XSTs are not received at, or filled with zeroes, see also I am not receiving any XSTs and/or SSTs from SDP!.

Each block contains 12x12 XSTs, and are indexed in the same order baselines are, see https://git.astron.nl/lofar2.0/
tango/-/blob/master/tangostationcontrol/tangostationcontrol/common/baselines.py on how to convert baseline indices
to and from input pairs.

22.2. SDP: Digital signal processing 69

https://git.astron.nl/lofar2.0/tango/-/blob/master/tangostationcontrol/tangostationcontrol/common/baselines.py
https://git.astron.nl/lofar2.0/tango/-/blob/master/tangostationcontrol/tangostationcontrol/common/baselines.py

LOFAR2.0 Station Control

70 Chapter 22. Signal Chain

CHAPTER

TWENTYTHREE

INSTRUMENT CALIBRATION

The signal path lengths and sensitivity differ per antenna, due to factors including:

• Wear and tear of the antennas and cables,

• Differences in cable length between antenna and RCU,

• Differences in signal path lengths within the processing equipment.

The signals thus need to adjusted with respect to each other in order to align their phases and amplitudes. These
per-antenna calibration values are split into the following parts to apply them:

• recv.RCU_attenuator_dB_RW: Coarse attenuation of each antenna input in the RCU, in dB,

• sdp.FPGA_signal_input_samples_delay_RW: Coarse delay added to each antenna input in the SDP, in sam-
ples,

• sdp.FPGA_subband_weights_RW: Fine attenuation & delay of each antenna input in the SDP, as a complex
multiplication factor per antenna per subband.

These signal differences are frequency dependent. To address this, we maintain different models for signals around
the reference frequencies of 50 MHz (LBA), and 150, 200, and 250 MHz (HBA). The calibration subsystem uses the
antennafield.Frequency_Band_RW attribute to determine the current reference frequency for each antenna:

Antenna
type

Frequency
band

antennafield.
Frequency_Band_RW

Clock recv.
RCU_band_select_RW

Reference fre-
quency

LBA 10 - 90 MHz LBA_10_90 / LBA_10_70 (any) 1 50 MHz
LBA 30 - 90 MHz LBA_30_90 / LBA_30_70 (any) 2 50 MHz
HBA 110 - 190

MHz
HBA_110_190 200

MHz
2 150 MHz

HBA 170 - 230
MHz

HBA_170_230 160
MHz

1 200 MHz

HBA 210 - 240
MHz

HBA_210_250 200
MHz

4 250 MHz

71

LOFAR2.0 Station Control

23.1 Mathematical Background

We equalise the signals of the different antennas to compensate for the delay and attenuation effects, in two steps: coarse
and fine. The following table describes what is corrected for where:

Effect Granuality Compensation How
Delay Coarse sdp.FPGA_signal_input_samples_delay_RW Delaying using a ring buffer
Delay Fine sdp.FPGA_subband_weights_RW Phase shifts
Attenuation Coarse recv.RCU_attenuator_dB_RW Dampening whole dBs
Attenuation Fine sdp.FPGA_subband_weights_RW Amplitude scaling

The coarse delay compensation is done in SDP, by delaying all inputs to line up with the latest arriving one. The
FPGAs do this through a sample shift, in which the samples from each input is delayed a fixed number of samples. At
the 200 MHz clock, samples are 5 ns. The sample shift aligns the inputs with a remaining difference of +/- 2.5 ns.

This remainder is corrected for in the fine delay compensation, by shifting the phases of each input backwards. A phase
shift is frequency dependent (-2pi * frequency * delay), and is thus applied at the higher frequency resolution
after creating subbands. The FPGA_subband_weights_RW in SDP allows us to configure a complex correction factor
for each subband from each input. A phase shift phi is converted into a complex factor through cos(phi) + i *
sin(phi).

Note: The delay compensation shifts all antenna signals by a fixed amount: the number of samples to delay to line
up with the longest cable. Yet we mark those signals as “now” in SDP. This introduces a temporal shift of the order of
200ns. This is deemed acceptable, as after the station FFT (that creates the subbands), we have 5.12ms samples, which
is an order of magnitude higher time scale.

The coarse loss compensation is done in RECV on the RCU, which can attenuate each input an integer number of
decibels. We attenuate each signal to line up with the weakest. The remaining attenuation is +/- 0.5 dB.

The remainder is corrected for in the fine loss compensation, by applying an amplitude scaling factor (10^(-dB/10))
as part of the complex FPGA_subband_weights_RW (see above). This scaling factor is the same for all subbands.

23.2 Configuration

The following properties describe the AntennaField for calibration purposes:

Antenna_Cables
Encodes which cable type is attached to each antenna in the field, as described in dict common.
cables.cable_types.

type
str[N_antennas]

Field_Attenuation
Attenuation to apply to all the antennas, on top of the cable model, to align this antennafield with
other fields.

type
float64

72 Chapter 23. Instrument Calibration

LOFAR2.0 Station Control

23.3 Coarse Corrections

Both the coarse attenuation and delay corrections are caused by the difference in cable lengths: longer cables result in
more delay, and more loss of signal. We maintain a cable model in the dict common.cables.cable_types, which
describes the delay introduced by each cable, as well as the loss at each of our modelled frequencies.

The coarse corrections are the rounded versions of these differences. The rounding errors, as well as the subtle differ-
ences between the individual cables of the same type are compensated for in the fine corrections below. The Anten-
naField exposes the following attributes to inspect the configuration and the computed calibration values:

Antenna_Cables_R
The type of cable connected to each antenna.

type
str[N_antennas]

Antenna_Loss_R
The loss introduced by each cable, according to the cable model, in dB, for the currently selected
frequency.

type
float64[N_antennas]

Antenna_Delay_R
The delay introduced by each cable, according to the cable model, in seconds.

type
float64[N_antennas]

Calibration_SDP_Signal_Input_Samples_Delay_R
The delay which is to be applied to both polarisations of each antenna, in samples.

type
uint32[N_antennas]

Calibration_RCU_Attenuation_dB_R
The attenuation to apply to each antenna, in (integer) dB.

type
uint32[N_antennas]

23.4 Fine Corrections

The fine attenuation and delay corrections are caused by both known and unknown differences between the antennas.
The known differences are the remainders from the cable model, left after the coarse corrections have been applied.
The fine corrections are applied in SDP as subband weights, which are complex multiplication factors for each subband
for each input.

The AntennaField exposes the known corrections as:

Calibration_SDP_Fine_Calibration_Default_R
Computed fine calibration values, as a tuple (delay, phase_offset, amplitude_scaling).

type
float64[N_antennas * N_pol][3]

Calibration_SDP_Subband_Weights_Default_R
Computed fine calibration values as subband weights (complex values).

23.3. Coarse Corrections 73

LOFAR2.0 Station Control

type
float64[N_antennas * N_pol][N_subbands * VALUES_PER_COMPLEX]

To also cover the unknown differences between the antennas, the correct subband weights are actually measured and
stored in calibration tables. These values then cover both the known and the unknown corrections. The AntennaField
exposes the actual subband weights it will apply through:

Calibration_SDP_Subband_Weights_R
Fine calibration values as subband weights (complex values).

type
float64[N_antennas * N_pol][N_subbands * VALUES_PER_COMPLEX]

The individual calibration tables for each frequency are provided through:

Calibration_SDP_Subband_Weights_50MHz_R
Fine calibration values as subband weights, for 50MHz input signals.

Calibration_SDP_Subband_Weights_150MHz_R
Fine calibration values as subband weights, for 150MHz input signals.

Calibration_SDP_Subband_Weights_200MHz_R
Fine calibration values as subband weights, for 200MHz input signals.

Calibration_SDP_Subband_Weights_250MHz_R
Fine calibration values as subband weights, for 250MHz input signals.

type
float64[N_antennas * N_pol][N_subbands * VALUES_PER_COMPLEX]

23.5 Managing Calibration Tables

The calibration tables for SDP are stored in the HDF5 file format, described at XXX, and easily read and written
in Python by using the common.calibration_table.CalibrationTable class in this package, or with the more
generic h5py Python package. Each file is typically named CalTable-CS001-HBA0-150MHz.h5, and is thus specific
for an antenna field and the frequency band used to determine it. Each file contains the subband weights, as well as
metadata on how and when they were determined.

The AntennaField device reads these files from disk, maintained in a dedicated Docker volume. New files can be
downloaded from a central location on demand, providing the follow functionality:

Calibration_Table_Base_URL
Property which contains the root URL for the calibration tables. The remote location of a calibration
table is f.e. {Calibration_Table_Base_URL}/CS001/CalTable-CS001-HBA0-150MHz.h5.

download_calibration_tables()
Command to download and apply the latest calibration tables, caching them in the Docker volume.

calibrate()
Command to apply the calibration tables present in the Docker volume.

74 Chapter 23. Instrument Calibration

LOFAR2.0 Station Control

23.6 Applying Calibration Values

The following commands in AntennaField upload new calibration values to the signal chain in RECV and SDP:

calibrate_recv()
Configure recv.RCU_attenuator_dB_RW for the antennas in the field.

calibrate_sdp()
Configure sdp.FPGA_signal_input_samples_delay_RW and sdp.
FPGA_subband_weights_RW for the antennas in the field.

Since both calibrations depend on the frequency of the signals, the above commands are automatically called when the
attribute antennafield.Frequency_Band_RW is written.

23.6. Applying Calibration Values 75

LOFAR2.0 Station Control

76 Chapter 23. Instrument Calibration

CHAPTER

TWENTYFOUR

CELESTIAL & GEODETIC CALIBRATION

The TileBeam and DigitalBeam devices use python-casacore to compute the direction of a given pointing with
respect to our antennas and reference positions. Casacore in turn uses measures tables for the precise measurements of
celestial positions, geodetical information, and time calibrations (f.e. leap seconds). These tables need to be installed
and periodically updated to maintain the pointing accuracy:

measures_directory_R
Directory of the active set of measures tables. The directory name includes the timestamp denoting
their age.

type
str

measures_directories_available_R
List of installed sets of measures tables.

type
str[64]

download_measures()
Download (but do not activate) the latest measures tables from ftp://ftp.astron.nl/outgoing/Measures/
WSRT_Measures.ztar. Returns the directory name in which the measures were installed.

returns
str

use_measures(dir)
Activate the measures tables in the provided directory. This necessitates turning off and restarting the
TileBeam device, so the command will always appear to fail. Turn the device back and the selected
measures tables will be active.

returns
(does not return)

77

https://casacore.github.io/python-casacore/index.html
ftp://ftp.astron.nl/outgoing/Measures/WSRT_Measures.ztar
ftp://ftp.astron.nl/outgoing/Measures/WSRT_Measures.ztar

LOFAR2.0 Station Control

78 Chapter 24. Celestial & Geodetic Calibration

CHAPTER

TWENTYFIVE

BROKEN HARDWARE

Not all hardware is always functional. Broken hardware must be excluded from the signal chain, and in some cases
prevented from powering up.

25.1 Disabling antennas

Not all antennas present in the field are to be used. The AntennaField device exposes the following properties for each
of its antennas:

Antenna_Quality
The condition of the antenna: 0=OK, 1=SUSPICIOUS, 2=BROKEN, 3=BEYOND_REPAIR.

type
int32[]

Antenna_Use
Whether each antenna should be used: 0=AUTO, 1=ON, 2=OFF. In AUTO mode, an antenna is used
if its quality is OK or SUSPICIOUS. In ON mode, it is always used. In OFF mode, never.

type
int32[]

which can also be queried as Antenna_Quality_R and Antenna_Use_R.

Note: If these properties are updated, you should restart both the AntennaField and DigitalBeam device to propagate
their effects.

The above settings result in a subset of the antennas in the AntennaField to be marked as usable. The following property
exposes this conclusion:

Antenna_Usage_Mask_R
Whether antennas will be used, according to their configured state and quality. Antennas which are
configured to be BROKEN, BEYOND_REPAIR, or OFF, are not used.

type
bool[N_tiles]

79

LOFAR2.0 Station Control

25.1.1 Effect on signal chain

The DigitalBeam device will only beamform inputs that are enabled in the AntennaField.Antenna_Usage_Mask_R
attribute.

80 Chapter 25. Broken Hardware

CHAPTER

TWENTYSIX

POWER DISTRIBUTION

At boot, during hardware initialisation, the following devices toggle power:

• The RECV device turns all RCUs enabled in RCU_mask_RW OFF and ON,

• The RECV device powers its antennas according to its RCU_PWR_ANT_on_RW_default property,

• The AntennaField device powers its antennas, if they are: * Enabled in Antenna_Usage_Mask_R attribute, that
is, not marked as BROKEN, BEYOND_REPAIR, or OFF, * Enabled in the Antenna_Needs_Power property.

Note: Exotic inputs like a noise source must not receive power, even when used. Use the Antenna_Needs_Power
property to configure which antennas should be powered on.

81

LOFAR2.0 Station Control

82 Chapter 26. Power distribution

CHAPTER

TWENTYSEVEN

DEVELOPER INFORMATION

This chapter describes key areas useful for developers.

27.1 Environment variables

Several environment variables fundamentally control the deployment and development environment. These include:

• TANGO_HOST

• TANGO_STATION_CONTROL

• TANGO_SKIP_BUILD

Firstly, TANGO_HOST should point to the tango database server including its port. An example would be
10.14.0.205:10000. If TANGO_HOST is not set instead tango.service.consul:10000 is used.

Finally TANGO_STATION_CONTROL can be used to control if device containers should build software from
source (developer mode). Or if the software should be built into the lofar-device-base docker image directly. If
TANGO_STATION_CONTROL is set the makefile will build a wheel package which will be installed into the docker
image.

If instead a particular wheel package needs to be installed TANGO_SKIP_BUILD can be set as well. Be sure the wheel
package is placed in the tangostationcontrol/dist/ directory.

In the future the actual value of the TANGO_STATION_CONTROL variable might be used to control various types of
different behavior.

27.2 Docker

Docker containers are build using make in the docker directory. Key commands are:

• make <container> to build the image for the container,

Since the Python code is taken from the host when the container starts, restarting is enough to use the code you have
in your local git repo. Rebuilding is unnecessary. Docker networking ————————-

The Docker containers started use a consul based virtual network to communicate among each other. This means that:

• Containers address each other by a service name as defined in the job file (f.e. tango.service.consul for the
TANGO_HOST),

• localhost can only be used within the containers to access other containers, if sidecar proxy is used.

• Most ports are dynamically allocated. It will be mapped to the right port within the container.

83

LOFAR2.0 Station Control

27.2.1 CORBA

Tango devices use CORBA, which require all servers to be able to reach each other directly. Each CORBA device
opens a port and advertises its address to the CORBA broker. The broker then forwards this address to any interested
clients. A device within a docker container cannot know under which name it can be reached, however, and any port
opened needs to be exposed explicitly in the docker-compose file for the device. To solve all this, we assign a unique
port to each device, and explictly tell CORBA to use that port, and what the hostname is under which others can reach
it. Each device thus has these lines in their compose file:

ports:
- "5701:5701" # unique port for this DS

entrypoint:
configure CORBA to _listen_ on 0:port, but tell others we're _reachable_ through $

→˓{HOSTNAME}:port, since CORBA
can't know about our Docker port forwarding
- python3 -u /opt/lofar/tango/devices/devices/sdp/sdp.py STAT -v -ORBendPoint␣

→˓giop:tcp:0:5701 -ORBendPointPublish giop:tcp:${HOSTNAME}:5701

Specifying the wrong $HOSTNAME or port can make your device unreachable, even if it is running. Note that $HOSTNAME
is advertised as is, that is, it is resolved to an IP address by any client that wants to connect. This means the $HOSTNAME
needs to be correct for both the other containers, and external clients.

The docker-compose/Makefile tries to set a good default for $HOSTNAME, but you can override it by exporting the
environment variable yourself (and run make restart <container> to effectuate the change).

For more information, see:

• https://huihoo.org/ace_tao/ACE-5.2+TAO-1.2/TAO/docs/ORBEndpoint.html

• http://omniorb.sourceforge.net/omni42/omniNames.html

• https://sourceforge.net/p/omniorb/svn/HEAD/tree/trunk/omniORB/src/lib/omniORB/orbcore/tcp/
tcpEndpoint.cc

27.3 Logging

Overview of the data flow between docker services to facilitate logging

84 Chapter 27. Developer information

https://huihoo.org/ace_tao/ACE-5.2+TAO-1.2/TAO/docs/ORBEndpoint.html
http://omniorb.sourceforge.net/omni42/omniNames.html
https://sourceforge.net/p/omniorb/svn/HEAD/tree/trunk/omniORB/src/lib/omniORB/orbcore/tcp/tcpEndpoint.cc
https://sourceforge.net/p/omniorb/svn/HEAD/tree/trunk/omniORB/src/lib/omniORB/orbcore/tcp/tcpEndpoint.cc

LOFAR2.0 Station Control

The Logstash pipeline collects the logs from the containers, as well as any external processes that send theirs. The
following interfaces are available for this purpose:

Interface Port Note
Syslog 1514/udp Recommended over TCP, as the Logstash pipeline might be down.
Syslog 1514/tcp
JSON 5959/tcp From python, recommended is the LogStash Async module.
Beats 5044/tcp Use FileBeat to watch logs locally, and forward them to Loki.

We recommend making sure the contents of your log lines are parsed correctly, especially if logs are routed to the
Syslog input. These configurations are stored in docker-compose/logstash/loki.conf.

27.3.1 Log from Python

The common.lofar_logging module provides an easy way to log to Loki through Logstash from a Python Tango
device.

27.3.2 Log from Docker

Not all Docker containers run our Python programs, and can forward the logs themselves. For those, we use the syslog
log driver in Docker. Extend the docker compose files with:

Logs forwarded in this way are provided with the container name, their timestamp, and a log level guessed by Docker.
It is thus wise to parse the message content further in Logstash (see above).

27.3. Logging 85

_images/logging-data-flow.png
https://pypi.org/project/python-logstash-async/
https://www.elastic.co/beats/filebeat

LOFAR2.0 Station Control

27.4 Services

86 Chapter 27. Developer information

_images/station-services.png

CHAPTER

TWENTYEIGHT

FAQ

28.1 Connecting to devices

28.1.1 My device is unreachable, but the device logs say it’s running fine?

The $HOSTNAME may have been incorrectly guessed by docker-compose/Makefile, or you accidently set it to an
incorrect value. If you have $HOSTNAME set in the shell running make, try:

unset HOSTNAME
make build
make stop
make start

If this does not work, you need to set $HOSTNAME to something that resolves to your machine, both for external parties
and for docker containers. See CORBA.

28.1.2 I get “API_CorbaException: TRANSIENT CORBA system exception: TRAN-
SIENT_NoUsableProfile” when trying to connect to a device?

See the previous answer.

28.2 Docker

28.2.1 How do I prevent my containers from starting when I boot my computer?

You have to explicitly stop a container to prevent it from restarting. Use:

cd docker-compose
make stop <container>

or plain make stop to stop all of them.

87

LOFAR2.0 Station Control

28.3 Windows

28.3.1 How do I develop from Windows?

Our setup is Linux-based, so the easiest way to develop is by using WSL2, which lets you run a Linux distro under
Windows. You’ll need to:

• Install WSL2. See f.e. https://www.omgubuntu.co.uk/how-to-install-wsl2-on-windows-10

• Install Docker Desktop

• Enable the WSL2 backend in Docker Desktop

• We also recommend to install Windows Terminal

28.3.2 How do I run X11 applications on Windows?

If you need an X11 server on Windows:

• Install VcXsrv

• Disable access control during its startup,

• Use export DISPLAY=host.docker.internal:0 in WSL.

You should now be able to run X11 applications from WSL and Docker. Try running xterm or xeyes to test.

28.4 SSTs/XSTs

28.4.1 I am not receiving any XSTs and/or SSTs from SDP!

Are you sure?

• Packets are arriving if sst.nof_packets_received / xst.nof_packets_received is increasing,

• Packets are sent by SDP if sst.FPGA_sst_offload_nof_packets_R / xst.
FPGA_xst_offload_nof_packets_R is increasing.

In general, the settings ought to be correct after the following:

The sdp.set_defaults() command, followed by sst.set_defaults() / xst.set_defaults(), should reset that
device to its default settings, which should result in a working system again. Also, check the following settings:

• sdpfirmware.TR_fpga_mask_RW[x] == True, to make sure we’re actually configuring the FPGAs,

• sdp.FPGA_communication_error_R[x] == False, to verify the FPGAs can be reached by SDP.

• sdp.FPGA_processing_enabled_R[x] == True, to verify that the FPGAs are processing, or the values and
timestamps will be zero,

• sdp.FPGA_signal_input_bsn_R is increasing, to verify that the FPGA processing is subject to the clock.

88 Chapter 28. FAQ

https://www.omgubuntu.co.uk/how-to-install-wsl2-on-windows-10
https://hub.docker.com/editions/community/docker-ce-desktop-windows/
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701
https://sourceforge.net/projects/vcxsrv/

LOFAR2.0 Station Control

28.4.2 The SDP is not sending SST/XST packets!

Packets are sent if sst.FPGA_sst_offload_nof_packets_R / xst.FPGA_xst_offload_nof_packets_R is in-
creasing. If not, check these settings:

• SSTs:

– sst.FPGA_sst_offload_enable_RW[x] == True, to verify that the FPGAs are actually emitting the
SSTs,

• XSTs:

– xst.FPGA_xst_offload_enable_RW[x] == True, to verify that the FPGAs are actually emitting the
SSTs,

– xst.FPGA_xst_processing_enable_RW[x] == True, to verify that the FPGAs are actually producing
the SSTs,

28.4.3 Some SSTs/XSTs packets do arrive, but not all, and/or the matrices remain
zero?

So sst.nof_packets_received / xst.nof_packets_received is increasing, telling you packets are arriving. But
they’re apparently dropped or contain zeroes.

The sst and xst devices expose several packet counters to indicate where incoming packets were dropped before or
during processing:

• nof_invalid_packets_R increases if packets arrive with an invalid header, or of the wrong statistic for this
device,

• nof_packets_dropped_R increases if packets could not be processed because the processing queue is full, so
the CPU cannot keep up with the flow,

• nof_payload_errors_R increases if the packet was marked by the FPGA to have an invalid payload, which
causes the device to discard the packet,

If no packets are received at all, check whether they are sent to the correct address:

• SSTs:

– sst.FPGA_sst_offload_hdr_eth_destination_mac_R[x] == <MAC of your machine's
mtu=9000 interface>, or the FPGAs will not send it to your machine. Use f.e. ip addr on the host to
find the MAC address of your interface, and verify that its MTU is 9000,

– sst.FPGA_sst_offload_hdr_ip_destination_address_R[x] == <IP of your machine's
mtu=9000 interface>, or the packets will be dropped by the network or the kernel of your machine,

– sst.FPGA_sst_offload_hdr_udp_destination_port_R[x] == 5001, or the packets will not be
sent to a port that the SST device listens on.

• XSTs:

– xst.FPGA_xst_offload_hdr_eth_destination_mac_R[x] == <MAC of your machine's
mtu=9000 interface>, or the FPGAs will not send it to your machine. Use f.e. ip addr on the host to
find the MAC address of your interface, and verify that its MTU is 9000,

– xst.FPGA_xst_offload_hdr_ip_destination_address_R[x] == <IP of your machine's
mtu=9000 interface>, or the packets will be dropped by the network or the kernel of your machine,

– xst.FPGA_xst_offload_hdr_udp_destination_port_R[x] == 5002, or the packets will not be
sent to a port that the XST device listens on.

28.4. SSTs/XSTs 89

LOFAR2.0 Station Control

If this fails, see the next question.

28.4.4 I am still not receiving XSTs and/or SSTs, even though the settings appear
correct!

Let’s see where the packets get stuck. Let us assume your MTU=9000 network interface is called em2 (see ip addr
to check):

• Check whether the data arrives on em2. Run tcpdump -i em2 udp -nn -vvv -c 10 to capture the first 10
packets. Verify:

– The destination MAC must match that of em2,

– The destination IP must match that of em2,

– The destination port is correct (5001 for SST, 5002 for XST),

– The source IP falls within the netmask of em2 (unless net.ipv4.conf.em2.rp_filter=0 is configured),

– TTL >= 2,

• If you see no data at all, the network will have swallowed it. Try to use a direct network connection, or a hub
(which broadcasts all packets, unlike a switch), to see what is being emitted by the FPGAs.

• Check whether the data reaches user space on the host:

– Turn off the sst or xst device. This will not stop the FPGAs from sending.

– Run nc -u -l -p 5001 -vv (or port 5002 for XSTs). You should see raw packets being printed.

– If not, the Linux kernel is swallowing the packets, even before it can be sent to our docker container.

• Check whether the data reaches kernel space in the container:

– Enter the docker device by running docker exec -it device-sst bash.

– Run sudo bash to become root,

– Run apt-get install -y tcpdump to install tcpdump,

– Check whether packets arrive using tcpdump -i eth0 udp -c 10 -nn,

– If not, Linux is not routing the packets to the docker container.

• Check whether the data reaches user space in the container:

– Turn off the sst or xst device. This will not stop the FPGAs from sending.

– Enter the docker device by running docker exec -it device-sst bash.

– Run sudo bash to become root,

– Run apt-get install -y netcat to install netcat,

– Check whether packets arrive using nc -u -l -p 5001 -vv (or port 5002 for XSTs),

– If not, Linux is not routing the packets to the docker container correctly.

• If still on error was found, you’ve likely hit a bug in our software.

90 Chapter 28. FAQ

LOFAR2.0 Station Control

28.4.5 Inspecting SST/XST packets

The fields sst.last_packet_R and xst.last_packet_R contain a raw dump of the last received packet for that
statistic. Parsing these packets is aided greatly by using our packet parser:

from tangostationcontrol.devices.sdp.statistics_packet import SSTPacket, XSTPacket

print the headers of the last received packets
print(SSTPacket(bytes(sst.last_packet_R)).header())
print(XSTPacket(bytes(xst.last_packet_R)).header())

28.5 Other containers

TBA

28.5. Other containers 91

LOFAR2.0 Station Control

92 Chapter 28. FAQ

CHAPTER

TWENTYNINE

INDICES AND TABLES

• genindex

• modindex

• search

93

	Installation
	Post-boot Initialisation
	Configuration

	Interfaces
	Monitoring & Control
	Jupyter Lab
	Jupyter Lab and Git
	PyTango
	ReST API

	Monitoring GUIs
	Grafana
	Prometheus

	Logs
	Loki

	Devices
	Using Devices
	States
	FAULT
	Initialise hardware
	Attributes
	Meta data

	Attribute masks

	AntennaField-HB (AFH), AntennaField-LB (AFL)
	Observation setup
	Positions
	Configuration
	Antenna mapping
	Positions

	HBAT element positions

	TileBeam, DigitalBeam
	Common functionality
	Beam Tracking
	Beam Steering
	Timing

	DigitalBeam

	Beamlet
	RECVH, RECVL
	Error information

	SDP Firmware
	Basic configuration
	Error information

	SDP
	Basic configuration
	Frequency management
	Data-quality information
	Error information
	Version Information
	Waveform Generator
	Usage example

	BST, SST, and XST
	BST Statistics attributes
	SST Statistics attributes
	XST Statistics attributes
	Configuring the XSTs

	Subscribe to statistics streams

	StationManager
	Docker
	PSOC
	CCD
	EC
	Configuration
	TemperatureManager
	Device Configuration
	TangoDB
	Device interaction
	Command-line interaction

	Enter your LOFAR2.0 Hardware Configuration
	Mandatory settings
	Optional settings

	Observing
	Starting an observation
	Observation Output
	Life cycle

	Managing observation(s)

	Signal Chain
	RECV: Data reception
	Input
	Processing

	SDP: Digital signal processing
	Input
	Processing
	SST output
	XST output

	Instrument Calibration
	Mathematical Background
	Configuration
	Coarse Corrections
	Fine Corrections
	Managing Calibration Tables
	Applying Calibration Values

	Celestial & Geodetic Calibration
	Broken Hardware
	Disabling antennas
	Effect on signal chain

	Power distribution
	Developer information
	Environment variables
	Docker
	CORBA

	Logging
	Log from Python
	Log from Docker

	Services

	FAQ
	Connecting to devices
	My device is unreachable, but the device logs say it’s running fine?
	I get “API_CorbaException: TRANSIENT CORBA system exception: TRANSIENT_NoUsableProfile” when trying to connect to a device?

	Docker
	How do I prevent my containers from starting when I boot my computer?

	Windows
	How do I develop from Windows?
	How do I run X11 applications on Windows?

	SSTs/XSTs
	I am not receiving any XSTs and/or SSTs from SDP!
	The SDP is not sending SST/XST packets!
	Some SSTs/XSTs packets do arrive, but not all, and/or the matrices remain zero?
	I am still not receiving XSTs and/or SSTs, even though the settings appear correct!
	Inspecting SST/XST packets

	Other containers

	Indices and tables

